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Abstract - To overcome the drawbacks in cuff 

based bp monitors, a new method for 

measuring BP has been proposed, which does 

not require a cuff. By using this approach, 

individuals can avoid the potential inaccuracies 

associated with cuff-based BP monitors and 

obtain more reliable. BP readings. The 

important principle used in this device is 

PhotoPlethysmoGram (PPG) and 

electrocardiogram (EKG). PPG is a simple and 

affordable optical measuring technique that is 

frequently used for heart rate monitoring. Thus 

measures the volumetric fluctuations of blood 

circulation and we obtain our PPG signal data.  

This device is also integrated with Clinical-

grade ECG sensor(AFE) which provide highly 

accurate data. This device algorithm is 

designed to analyse the PPG and ECG signal 

and by comparing the peaks  of both the waves 

and using our model the systole and diastole 

values are obtained. Uniqueness in this device 

is we can get our results just with our fingertips 

neither cuff is placed to measure BP nor 

electrodes are placed in chest to detect ECG. 

Keywords: PhotoPlethysmoGram(PPG), 

Electrocardiogram (ECG), Pulse transit time. 

I. INTRODUCTION 

Blood pressure (BP) is a primary concern when 

it comes to heart health. Monitoring BP 

readings and fluctuations is crucial in 

identifying potential health problems. The 

World Health Organization suggests that 

individuals should check their BP at least once 

a day to detect any spikes and reduce the risk of 

developing cardiovascular disease. Currently, 

cuff-based BP monitoring systems, including 

mercury-based sphygmomanometers, aneroid 

pressure monitors, and automatic BP monitors, 

are commonly used in clinical settings. 

However, using such cuff based BP monitors 

has some drawbacks, such as the potential for 

inaccurate readings due to slight movements, 

high chances of observer error, difficulty in 

monitoring infants or small children, noise 

interference resulting in inaccurate readings, 

calculation of systolic and diastolic blood 

pressure based on mean arterial pressure, and 

variations in machines based on the 

manufacturer. The regular adult cuff size is too 

short for individuals with an arm circumference 

of 32 cm or larger and will lead to 

overestimation of BP. Incorrect placement of 

the cuff can also result in inaccuracies when 

using cuff-based BP monitors. To overcome 

this issue, a new method for measuring BP has 

been proposed, which does not require a cuff. 

This novel method involves comparing the 

photoplethysmogram (PPG) and 

electrocardiogram (ECG) waves to obtain 

accurate measurements of blood pressure. By 

using this approach, individuals can avoid the 

potential inaccuracies associated with cuff-

based BP monitors and obtain more reliable BP 

readings.  

The field of invention for non-invasive cuffless 

blood pressure measurement is classified as 

medical devices and healthcare technology. It 

entails the development of novel methods and 

equipment for monitoring blood pressure 
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without the use of typical inflatable cuffs. It 

combines various technologies, including 

digital signal processing, biosensors, and 

wearable devices to provide a convenient and 

comfortable way to monitor blood pressure. 

The Biosensor detects physiological signals 

related to blood pressure, such as arterial 

waveforms, pulse transit time, and pulse wave 

velocity. Biosensors can be integrated into 

wearable devices or embedded in other health 

monitoring equipment. These devices are 

equipped with sensors and processing 

capabilities to continuously monitor blood 

pressure.  

The background of the invention for non-

invasive blood pressure measurement stems 

from the longstanding clinical necessity to 

accurately and continuously monitor an 

individual's blood pressure without the 

discomfort and inconvenience associated with 

traditional cuff-based methods. Traditional 

sphygmomanometers, while reliable, are often 

impractical for continuous monitoring and can 

lead to patient discomfort and compliance 

issues. As a response to these challenges, the 

field of non-invasive blood pressure 

measurement has evolved, integrating 

advancements in biosensors, digital signal 

processing, wearable technology, and artificial 

intelligence to develop innovative solutions 

capable of providing accurate and real-time 

blood pressure data in various settings, from 

home health monitoring to clinical and 

telemedicine applications, ultimately 

enhancing healthcare outcomes and patient 

convenience. The concept of blood pressure 

measurement dates back to ancient 

civilizations. Early physicians recognized the 

importance of pulse as a vital sign, with 

Hippocrates describing the pulse as a key 

indicator of health. However, systematic 

measurement of blood pressure didn't occur 

until much later. The 19th century saw 

significant advancements in blood pressure 

measurement techniques. The sphygmograph, a 

device that recorded pulse waveforms. 

However, this device didn't directly measure 

blood pressure. The early 20th century marked 

the development of the sphygmomanometer, 

the most common device used for blood 

pressure measurement today. The auscultatory 

method of blood pressure measurement 

involves a cuff and a stethoscope to listen for 

sounds indicating blood flow changes in the 

arteries during cuff inflation and deflation. 

With advancements in technology, electronic 

and automated blood pressure monitors became 

prevalent in the latter half of the 20th century. 

These devices provided more accurate and 

convenient measurements compared to 

traditional mercury-based 

sphygmomanometers. Additionally, the 

integration of digital displays and memory 

functions facilitated easier recording and 

tracking of blood pressure readings. The 21st 

century has witnessed further innovations in 

blood pressure measurement techniques, 

particularly the exploration of non-invasive 

cuffless methods. These methods leverage 

wearable sensors, signal processing algorithms, 

and machine learning to estimate blood 

pressure parameters without the need for cuffs, 

offering potential improvements in patient 

comfort and convenience. From ancient 

observations to modern technological 

innovations, the history of blood pressure 

measurement is a testament to humanity's 

relentless pursuit of understanding and 

monitoring cardiovascular health. As we 

continue to advance, the quest for more 

accurate, convenient, and non-invasive blood 

pressure measurement methods remains 

ongoing, promising better healthcare outcomes 

for individuals worldwide. 

II. LITERATURE SURVEY 

Tung-Li, Hsieh. (2023) have studied “A 

Hemodynamic Pulse Wave Simulator Designed 

for Calibration of Local Pulse Wave Velocities 

Measurement for Cuffless Techniques” The 
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paper proposes a device to simulate human 

pulse wave signals for the calibration of 

cuffless blood pressure measurement devices. 

The simulator consists of an electromechanical 

system to simulate the circulatory system and 

an arm model-embedded arterial phantom. The 

cuffless device measures the local pulse wave 

velocity (PWV) of the simulator, and a 

hemodynamic model is used to calibrate the 

cuffless device's measurement performance. 

The study demonstrates that using a multiple 

linear regression (MLR) model for calibration 

significantly improves the accuracy of the 

cuffless device, reducing the mean absolute 

error and measurement error. The proposed 

pulse wave simulator provides a standardized 

method for assessing the performance of 

cuffless blood pressure monitors and can be 

used for mass production and verification of 

these devices. The simulator simulates PWV by 

incorporating elastic tubes embedded in the 

pulse simulator model to simulate the 

physiological phenomenon of pulse wave 

transit during human circulation. The simulator 

also generates pulse wave signals that represent 

systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) using an electric pump 

and pressure sensors. The difference between 

SBP and DBP is the pulse pressure (PP), and 

the mean arterial pressure (MAP) is calculated 

as the sum of 1/3 of SBP and 2/3 of DBP[1] 

Carolin et al., (2023) studied “Cuffless Beat-to-

Beat Blood Pressure Estimation from 

Photoplethysmogram Signals” Many studies 

have been published on blood pressure (BP) 

estimation from photoplethysmogram (PPG) 

signals in recent years, aiming to overcome 

limitations of current BP devices. However, 

most of these studies suffer from 

methodological drawbacks regarding data 

handling, leading to overly positive evaluation 

of such methods. The paper addresses these 

limitations and presents a new approach for 

cuffless beat-to-beat BP estimation from raw 

PPG signals. The proposed method achieves a 

mean absolute error of 8.07 ± 6.86 mmHg for 

diastolic BP and 8.73 ± 7.36 mmHg for systolic 

BP when evaluated on unseen test subjects. The 

use of a convolutional neural network (CNN) 

enables beat-to-beat BP estimation from PPG 

signals, providing a novel contribution to the 

field. The paper also explores the transparency 

of the model's decision-making through layer 

activation analysis and investigates the impact 

of fine-tuning for personalization of the 

model.[2]   

H. Samimi et al., (2023) reviewed “A PPG-

Based Calibration-Free Cuffless Blood 

Pressure Estimation Method Using 

Cardiovascular Dynamics” The paper proposes 

a calibration-free method for blood pressure 

estimation using dynamic changes in the pulse 

waveform and information from 

photoplethysmogram (PPG) morphology. The 

method shows a high correlation between blood 

pressure estimated with PPG morphology 

features and the calibration method. The 

authors suggest that PPG morphology features 

could replace the calibration stage for a 

calibration-free method with similar accuracy. 

The proposed methodology was tested on 200 

patients and resulted in a mean error of -0.31 

mmHg for diastolic blood pressure (DBP) and 

-4.02 mmHg for systolic blood pressure (SBP). 

The study supports the potential for using PPG 

signals for calibration-free cuffless blood 

pressure estimation and improving accuracy by 

incorporating information from cardiovascular 

dynamics. The paper also mentions the use of 

deep learning and mathematical models for 

blood pressure estimation based on PPG 

morphology features. The authors highlight the 

potential for improving blood pressure 

estimation accuracy of other methods, such as 

those based on pulse transit time, by 

incorporating information from cardiovascular 

dynamics [3] 

Hemalatha K, Suganthi L, and Manivannan M 

(2010) have studied "Hybrid Cardiopulmonary 
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Model for Analysis of Valsalva Maneuver with 

Radial Artery Pulse." The primary aim of this 

research was to examine how respiratory 

influences impact the pressure pulse of the 

radial artery; a concept akin to 

photoplethysmography. The study employed a 

comprehensive model that combined features 

from both lumped parameter and distributed 

parameter (PPG) systems. This hybrid model 

merged the transmission line arterial tree 

model, spanning from the aorta to the radial 

artery, with a cardiopulmonary (CP) model 

using lumped parameters. By introducing 

variations in intrapleural pressure (Ppl) due to 

respiration into the circulatory system, the 

study enabled a thorough exploration of cardio-

pulmonary interactions. The resultant 

correlation coefficients derived from the 

model's output closely aligned with 

experimental results. This integrated model 

holds potential for assessing the clinical 

implications of the radial artery pulse in 

diagnosing cardiac and respiratory conditions, 

as it constitutes a vital element in both 

conventional medical practices and 

complementary medicine systems. The model's 

PPG signal is interpreted as a representation of 

the radial signal [4]. 

Basheq Tarifi, Aaron Fainman, Adam 

Pantanowitz, David M. Rubin have studied “A 

Machine Learning Approach to the Non-

Invasive Estimation of Continuous Blood 

Pressure Using Photoplethysmography”.Blood 

pressure is an important vital sign that 

sometimes requires continuous measurement. 

The current methods include cuff 

measurements (manual auscultation and 

oscillometric techniques) for non-continuous 

measurement and invasive arterial cannulation 

for continuous measurement. The use of 

photoplethysmography as a cuffless, non-

invasive, and continuous blood pressure 

measurement system is investigated through 

the use of four neural networks. These predict 

the systolic blood pressure, diastolic blood 

pressure, mean arterial blood pressure, and 

waveform shape. The models are trained on 890 

h of data from 1669 patients in the MIMIC-III 

database. Featuretrained artificial neural 

networks predict the systolic blood pressure to 

5.26 ± 6.53 mmHg (mean error ± standard 

deviation), the diastolic blood pressure to 2.96 

± 3.31 mmHg, and the mean arterial pressure to 

3.27 ± 3.55 mmHg. These are used to shift and 

scale the predicted waveform, allowing the 

waveform prediction neural network to 

optimise for the wave shape rather than the 

amplitude. The waveform prediction has 86.4% 

correlation with the actual arterial blood 

pressure waveform. All results meet 

international clinical blood pressure 

measurement standards and could potentially 

change how blood pressure is measured in both 

clinical and research settings. However, more 

data from healthy individuals and analysis of 

the models’ biases based on clinical features is 

required[5]. 

 

III. PROPOSED METHODOLOGY 

 

Fig 1. Flow chart for working procedure 

 

Blood pressure (BP) is a primary concern when 

it comes to heart health. Monitoring BP 

readings and fluctuations is crucial in 
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identifying potential health problems. The 

World Health Organization suggests that 

individuals should check their BP at least once 

a day to detect any spikes and reduce the risk of 

developing cardiovascular disease. Currently, 

cuff-based BP monitoring systems, including 

mercury-based sphygmomanometers, aneroid 

pressure monitors, and automatic BP monitors, 

are commonly used in clinical settings. 

However, using such cuff-based BP monitors 

has some drawbacks, such as the potential for 

inaccurate readings due to slight movements, 

high chances of observer error, difficulty in 

monitoring infants or small children, noise 

interference resulting in inaccurate readings, 

calculation of systolic and diastolic blood 

pressure based on mean arterial pressure, and 

variations in machines based on the 

manufacturer [6]. The regular adult cuff size is 

too short for individuals with an arm 

circumference of 32 cm or larger and will lead 

to overestimation of BP. Incorrect placement of 

the cuff can also result in inaccuracies when 

using cuff-based BP monitors. To overcome 

this issue, a new method for measuring BP has 

been proposed, which does not require a cuff. 

This novel method involves comparing the 

photoplethysmogram (PPG) and 

electrocardiogram (ECG) waves to obtain 

accurate measurements of blood pressure[7]. 

By using this approach, individuals can avoid 

the potential inaccuracies associated with cuff-

based BP monitors and obtain more reliable BP 

readings. This project involves a combination 

of software and hardware components to 

achieve its objectives.  

MATLAB:  

MATLAB serves as the primary software tool 

for this project. It plays a pivotal role in 

processing and analysing the digital signals 

acquired from the ECG and PPG sensors. It 

provides powerful tools for visualizing ECG 

and PPG signals in graph format. Algorithms 

implemented in MATLAB allow precise 

removal of artifacts (such as DC offset and 

baseline wander) from the acquired signals. 

Techniques like high-pass filtering enhance 

signal quality[8]. 

It computes the first derivative of the PPG 

signal. This derivative reveals dynamic 

changes in blood volume over time, providing 

valuable insights into cardiovascular dynamics.  

The algorithms detect peaks in both the ECG 

and the first derivative of the PPG signal. These 

peaks play a crucial role in calculating Pulse 

Transit Time (PTT), which serves as an 

indicator of blood pressure. 

Processing 4.3: 

Processing 4.3 is utilized as the platform for 

acquiring ECG and PPG signals in analog 

format and converting them into digital signals. 

Processing 4.3 facilitates the conversion of 

analog signals into digital format, ensuring 

compatibility with MATLAB for further 

processing. After analog-to-digital conversion, 

the signals are stored in CSV files for 

subsequent processing in MATLAB. 

Processing 4.3 manages the acquired signal 

data, organizing it in a structured format 

suitable for analysis in MATLAB 

 

Fig 2. ECG and PPG analog output 

HARDWARE COMPONENTS 

MAX86150 Breakout Board: 

The MAX86150 breakout board is a critical 

component for acquiring both ECG 

(Electrocardiogram) and PPG 

(Photoplethysmogram) signals simultaneously. 
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It offers biopotential sensing capabilities, 

allowing precise sampling of physiological 

signals. By integrating ECG and PPG 

functionalities, it streamlines the data 

acquisition process. 

The MAX86150 captures electrical signals 

generated by the heart (ECG). These signals 

provide insights into cardiac activity. The same 

board also measures blood volume changes 

using optical sensors (PPG). PPG signals reveal 

pulsatile changes in blood flow, aiding in heart 

rate estimation and SpO2 monitoring. 

 

Fig 3. Breakout Board 

Arduino UNO Microcontroller: 

The Arduino UNO serves as the central 

processing unit for interfacing with the 

MAX86150 breakout board. It facilitates 

communication between the sensors and the 

processing software (such as MATLAB). The 

microcontroller manages data transmission, 

synchronization, and control. The Arduino 

UNO reads raw ECG and PPG data from the 

MAX86150. It preprocesses the signals, 

performs necessary calculations, and prepares 

them for further analysis. The processed data 

can then be transmitted to a computer or other 

devices for visualization and interpretation. 

Development Methodology 

 

Fig 4. Signal Acquisition 

QWIIC Connectors: 

QWIIC connectors are specifically chosen for 

their compatibility and ease of use. They 

simplify the wiring process, ensuring reliable 

signal transmission. These connectors typically 

have a four-pin design, making it 

straightforward to connect the MAX86150 

breakout board to the Arduino UNO. QWIIC 

connectors eliminate the need for complex 

wiring configurations, reducing the risk of 

errors during setup. 

Signal Acquisition: 

The MAX86150 breakout board and Arduino 

UNO capture ECG and PPG signals, which 

provide vital physiological data related to heart 

activity and blood flow. The proper setup of 

hardware components establishes connections 

using QWIIC connectors to facilitate reliable 

signal transmission. 

Analog to Digital Conversion: 

The analog signals obtained from the sensors 

are converted into digital format, for preserving 

signal integrity and enabling further 

processing. Appropriate analog-to-digital 

conversion techniques are employed to 

accurately represent the analog signals in a 
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digital domain, ensuring fidelity in subsequent 

analysis. 

Signal Preprocessing: 

Perform signal preprocessing enhance the 

quality and usability of the acquired data. 

Removal of DC offset from the signals using 

high pass filtering methods to center the signals 

around zero and eliminate unwanted bias is 

performed. Filters are applied to mitigate 

baseline wander and other artifacts present in 

the signals, ensuring a cleaner signal for 

subsequent analysis. 

First Derivative Calculation: 

The first derivative of the PPG signal is 

calculated to capture its rate of change over 

time. This derivative provides insights into the 

dynamics of the PPG waveform, including the 

steepness of its incline and decline, which can 

be indicative of physiological phenomena such 

as arterial stiffness and vascular tone. 

Peak Detection: 

Peaks are identified in both the ECG and first 

derivative PPG signals using peak detection 

algorithms. Peaks in the ECG signal correspond 

to specific events in the cardiac cycle, such as 

the depolarization and repolarization of the 

heart's chambers. Peaks in the first derivative 

PPG signal represent significant changes in 

blood volume and pressure within the arterial 

system, which can be used as reference points 

for subsequent analysis. 

PTT Estimation: 

The Pulse Transit Time (PTT) between 

corresponding peaks in the ECG and PPG 

signals is calculated. PTT is a measure of the 

time it takes for a pulse pressure wave to travel 

between two arterial sites and is influenced by 

factors such as arterial compliance and 

stiffness. Estimating PTT provides valuable 

information about vascular health and can serve 

as a surrogate marker for cardiovascular 

function. 

Blood Pressure Estimation: 

Developed algorithms estimate Diastolic Blood 

Pressure (DBP) and Systolic Blood Pressure 

(SBP) based on PTT measurements. The 

established relationships between PTT and 

blood pressure are used to derive accurate 

estimations of DBP and SBP, which are 

essential indicators of cardiovascular health. 

Optimization and Iteration: 

Iteratively optimize the methodology based on 

testing results and feedback from stakeholders. 

Fine-tune algorithms and signal processing 

techniques to improve accuracy, efficiency, and 

robustness, ensuring the reliability of the final 

system. 

 

IV. RESULT AND DISCUSSION 

Ecg signal load 

Once acquiring digital signal of PPG and ECG 

waveform from the processing software next 

inserting those signals to MATLAB. Frist the 

ECG signal is loaded as in .txt format, and the 

loaded signal is doubled. In the provided code 

snippet, the variable 'y' is loaded from a file 

using 'load('ecgm.txt')'. However, it seems the 

data type of ,y, is initially set as duration, which 

may not be appropriate for further signal 

processing tasks. Duration data type is typically 

used to represent time intervals, not signal 

values. By converting the data type from 

duration to double ('y = double(y)'), you're 

essentially converting the ECG signal values 

from their original data type (duration) to a 

numerical format (double precision floating 

point numbers). This allows you to perform 

mathematical operations and signal processing 

tasks on the ECG signal data effectively. The 

implemented MATLAB algorithms effectively 

removed DC offset and baseline wander from 
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the ECG resulting in improved signal quality 

and specifying how the graph of ECG should 

be displayed. 

 

Fig 5. ECG Signal load 

Ppg signal load 

The same procedure is repeated for the PPG 

signal too, where the digital signal is loaded in 

MATLAB in .txt format, to convert the original 

data type to numeric format again the PPG 

signal is doubled. This allows you to perform 

mathematical operations and signal processing 

tasks on the PPG signal data effectively. The 

implemented MATLAB algorithms effectively 

removed DC offset and baseline wander from 

the PPG resulting in improved signal quality 

and specifying how the graph of PPG should be 

displayed.  

 

Fig 6. PPG Signal load 

Ecg peak detection 

Next comes the peak detection part of the 

generated ECG waves,  

Initialization: 'j = 1': Initializes a variable 'j' to 

1. This variable is used to index the 'val' and 

'pos' arrays, which store the values and 

positions of the detected peaks, respectively. 'n 

= length(y)': Retrieves the length of the ECG 

signal stored in the variable 'y'. 

Peak Detection Loop: The loop iterates through 

the ECG signal starting from the second sample 

('for i = 2: n-1'). 'if' statement checks if the 

current sample y(i) is greater than the previous 

sample 'y(i-1)', greater than or equal to the next 

sample 'y(i+1)', and greater than 45% of the 

maximum value of the ECG signal 

('0.45*max(y)'). If all conditions are met, it 

indicates a potential peak in the ECG signal. If 

a peak is detected, its value 'y(i)' is stored in the 

'val' array, and its position 'i' is stored in the 'pos' 

array. The index 'j' is then incremented ('j = j + 

1') to prepare for the next potential peak. 

Normalization: 'ecg_peaks = j - 1': Calculates 

the total number of detected peaks by 

subtracting '1' from the final value of 'j'. This 

adjustment is necessary because 'j' was 

incremented after the last peak detection loop 

iteration. 'ecg_pos = pos ./ 1000': Normalizes 

the peak positions ('pos') by dividing them by 

1000. This normalization is likely performed to 

convert the positions from sample indices to 

seconds, assuming a sampling frequency of 

1000 Hz (which might be the case considering 

the comment regarding the passband 

frequency). 

Plotting: 'plot (pos, val, '*r')': Plots the detected 

peaks on the ECG signal plot. Peaks are marked 

with red asterisks ('*r'). The x-axis represents 

the positions of the detected peaks ('pos'), and 

the y-axis represents the corresponding peak 

values ('val'). title ('ECG peak'): Sets the title of 

the plot to 'ECG peak'. 

 

Fig 7. ECG peak detection 
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 Ppg peak detection 

Peak Detection Using Built-in Function: 

[peaks,locs]=findpeaks(z,'MinPeakHeight', 

threshold_peak,'MinPeakDistance', 

window_size_peak); This line uses the 

findpeaks function to detect peaks in the PPG 

signal z. 

MinPeakHeight: Specifies the minimum height 

of peaks to be detected. Peaks below this 

threshold will be ignored. 

MinPeakDistance: Specifies the minimum 

distance between consecutive peaks. This 

prevents detecting multiple peaks within a short 

time span, which can occur due to noise or 

artifacts. 

Custom Peak Detection Loop: This loop 

iterates through the PPG signal starting from 

the second sample (for i = 2: n-1). It checks if 

the current sample z(i) is greater than the 

previous sample z(i-1), greater than or equal to 

the next sample z(i+1), and greater than 43% of 

the maximum value of the PPG signal 

(0.43*max(z)). If all conditions are met, it 

indicates a potential peak in the PPG signal. If 

a peak is detected, its value z(i) is stored in the 

val array, and its position i is stored in the pos1 

array. The index m is then incremented (m = m 

+ 1) to prepare for the next potential peak. 

Normalization: ppg_peaks = m - 1: Calculates 

the total number of detected peaks by 

subtracting 1 from the final value of m. This 

adjustment is necessary because m was 

incremented after the last peak detection loop 

iteration. 

ppg_pos = pos1. / 1000: Normalizes the peak 

positions (pos1) by dividing them by 1000. This 

normalization is likely performed to convert the 

positions from sample indices to seconds, 

assuming a sampling frequency of 1000 Hz. 

ppg_val = val;: Copies the values of detected 

peaks into ppg_val. 

Plotting: plot (pos1, val,'*g'): Plots the detected 

PPG peaks on a separate plot. Peaks are marked 

with green asterisks ('*g'). The x-axis 

represents the positions of the detected peaks 

(pos1), and the y-axis represents the 

corresponding peak values (val). title ('ECG & 

PPG signal'); Sets the title of the plot to 'ECG 

& PPG signal'. Legend ('ECG signal','PPG 

signal'): Adds a legend to the plot indicating the 

signals being plotted.  

 

Fig 8. ECG and PPG detected peak graph 

 

Fig 9. PPG peak detection 

 PTT detection 

ptt = (ppg_pos - ecg_pos): Calculates the PTT 

by subtracting the corresponding ECG peak 

positions (ecg_pos) from the PPG peak 

positions (ppg_pos). This calculation results in 

an array ptt containing the time intervals 

between each PPG peak and its corresponding 

ECG peak. The PTT represents the time taken 

for the pulse wave to travel from the heart 

(ECG peak) to a peripheral location (PPG 

peak). 
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Fig 10. PTT detection 

 

Fig 11. PTT detected graph 

BP calculation 

Input Height: 'Height = input ('Please specify 

Height');': This line prompts the user to input 

their height. The height is needed for the 

calculation of pulse wave velocity (PWV) in 

the subsequent steps. 

Calculate Pulse Time: 'pulsetime = 

mean2(ptt);': Calculates the mean pulse transit 

time ('pulsetime') from the array of PTT values 

('ptt'). This value represents the average time 

taken for the pulse wave to travel from the heart 

to a peripheral location. 'pulsetime1 = 

pulsetime * 1000;': Converts the pulse transit 

time from seconds to milliseconds. This 

conversion is likely because the input height 

(Height) might be in meters, and other 

constants in the calculations are in SI units. 

Calculate Pulse Wave Velocity (PWV): 'PWV = 

((0.5 * Height) / pulsetime1);': Computes the 

pulse wave velocity using the formula: PWV = 

(0.5 * Height) / PulseTime. Pulse wave velocity 

represents the speed at which the pulse wave 

travels along a blood vessel. It's proportional to 

the stiffness of the vessel and inversely 

proportional to its compliance. 

Calculate Systolic Blood Pressure (SBP) and 

Diastolic Blood Pressure (DBP): 'SBP = ((-

1.28) * (PWV^2)) + (1156.3 * PWV);': 

Computes the systolic blood pressure (SBP) 

using the formula provided. The formula 

appears to be derived from empirical data and 

theoretical models that relate PWV to blood 

pressure. DBP = ((-0.61) * (PWV^2)) + (854.5 

* PWV);': Computes the diastolic blood 

pressure (DBP) using a similar formula based 

on PWV. 

 

Fig 12. SBP and DBP results 

V. CONCLUSION 

The provided MATLAB code segments 

collectively aim to estimate blood pressure 

using signals derived from both ECG 

(Electrocardiogram) and PPG 

(Photoplethysmogram) measurements. 

Initially, peak detection algorithms are applied 

to both signals to identify the peaks 

corresponding to individual heartbeats. 

Subsequently, the pulse transit time (PTT) 

between the peaks of the two signals is 

calculated, representing the time taken for the 

pulse wave to travel from the heart (ECG peak) 

to a peripheral location (PPG peak). Leveraging 

the user's height as an input parameter, the code 

computes the pulse wave velocity (PWV), a 

key metric influenced by arterial stiffness and 

compliance. Employing empirically derived 

formulas, the code then estimates both systolic 

and diastolic blood pressure based on the 
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calculated PWV. These steps outline a technical 

approach utilizing signal processing techniques 

and physiological principles to derive blood 

pressure estimates from ECG and PPG signals, 

thereby offering a non-invasive method for 

cardiovascular assessment. However, it's 

essential to acknowledge that the accuracy of 

these estimates may be influenced by factors 

such as individual variability, signal quality, 

and the assumptions inherent in the employed 

models. Further validation and refinement of 

these methods may be warranted to enhance 

their reliability in clinical practice. 
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